
A Note on the Stability of 
Predictor-Corrector Techniques* 

By James Case 

Abstract. The theory of schlicht mappings is used to estimate stepsizes which guarantee 
the stability of a linear multistep method for the integration of ordinary differential 
equations. 

In this paper we shall consider the propagated error which arises in the approxi- 
mate solution of the initial value problem 

(1) x = Ax, x(to) = xo, 

where A is an N X N constant real matrix, by the general linear k-step finite 
difference equation 

(2) akY(n + k) + + aoy(n) = h(bky(n + k) + * + boy(n)) . 
We shall show that, as in the case of a single equation, the stability of the method 
(2) depends on the moduli of the zeros of a certain polynomial, and that if the 
eigenvalues of A have negative real parts, the stepsize h may be chosen so small 
that all the zeros lie inside the unit circle. We then give a table of the numerical 
constants needed for choosing the h in such fashion, and exhibit the results of some 
experiments designed to illustrate the importance of the effects under consideration. 

I. The Statement of the Theorem. In order to give our theorem as simple a 
form as possible, it is helpful to introduce a certain amount of terminology. Most of 
the terms which follow either are, or closely resemble terms, which are in general 
use. Notation: 

(a) Let Xi, ***, XN be the eigenvalues of A, and let 41, ***, 4N be their respective 
arguments, which we shall take to lie in the interval 0 < 4 < 2ir. Also, let X = 

maxi XiI and 0 = maxim - q5 i , where i = 1, 2, ** *, N. 
(b) Let 

k 
(3 ) p (z) = akz + + alz + ao= ak (z - al) * (z - ak) id O, 

a (z) = bkzk+ + bz+bo bk(z - fl) . (z - Ok). 

We assume that al = 1, and that a2, *, ?ak lie inside the unit circle. 
(c) In addition, we assume p'(1) = v(l), and that p(z) and a(z) have no common 

zeros. 
(d) Let the pair (p, a-) be called a method. Then each method and choice of the 

constant h, called the stepsize, defines a unique finite difference Eq. (2). Assump- 
tions (b) and (c) now guarantee that the methods (p, a) are stable and consistent 
in the sense of Dahlquist [2]. 
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742 JAMES CASE 

(e) Let C be a fixed contour lying inside the unit circle, enclosing a2, a ak, 

and let Q = minec Ip(z)/oa(z)j. 
(f) Let re be defined for 0 < 0 < ir/2 as the least positive root of the equation 

(4) +2 cos(r +0+logl+r)=o. 

Values of re for several choices of the arguments Q, 0 are found in Table 1 at the end 
of the paper. 

(g) Let x(t) be the exact solution of the problem (1). We will abuse this notation 
to the extent of writing x(n) = x(to + nh). 

(h) Let y(O) = x(O), and let y(l), ** , y(k - 1) be k - 1 real N-vectors called 
starting values for the Eq. (2). 

(i) Let y(n) be the approximation for x(n) obtained by use of (2) and the starting 
values y(O), *.., y(k - 1). As usual we shall assume that the method is used 
iteratively, until convergence is achieved so that the sequence { y(n) } depends only 
on the corrector formula (2) and not on the choice of the predictor formula. 

(j) Let ef(n) = x(n) - y(n). We call ef(n) the error at the nth step. 
Next we shall define two different kinds of stability. The first is entirely standard, 

and requires no explanation. The second is a weakening of the concept of A-stability 
introduced by Dahlquist [3]. It is of interest because methods of arbitrarily high 
order may be B-stable, while only methods of order two or less may be A-stable. 

Definition 1. The problem (1) will be called asymptotically stable if limt x(t) = 

o for every choice of the initial value xo. 
Definition 2. The method (p, a) will be called B-stable with respect to the problem 

(1) if for some At > 0 the zeros of the polynomials 

(5) p (z) - hXa(z) , i = 1) 2,fN, 

called the characteristic polynomials of the method (p, a) lie on or inside the unit 
circle whenever IhXl < ,u. Thus we may demonstrate that a given method (p, a) is 
B-stable with respect to a particular problem by showing that the zeros of the 
polynomials (5) are of less than unit modulus for sufficiently small stepsizes h. In 
contrast, a method is A-stable only if, when applied to an appropriate problem, the 
zeros of (5) remain in the unit circle for every positive h. It is in this sense that 
B-stability is a weakening of Dahlquist's A-stability. 

We may now state the following: 
THEOREM. The method (p, a), which is stable and consistent because of assumptions 

(a) and (b), is B-stable with respect to the problem (1) if and only if (1) is asymptotically 
stable. In addition, /L may be taken to be reQ. 

II. The Characteristic Polynomials. To begin with, let us introduce the finite- 
difference operator E defined for every vector valued function v on the positive 
integers by the relation Ev(n) = v(n + 1). We may now write Eq. (2) in the shorter 
form 

(2') p(E)y(n) = ho(E)y(n). 
The principal value of this notation arises from the easily verified fact that the 
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operators p(E), where p is any polynomial, commute with ordinary matrix multipli- 
cation. 

If we now consider the sequence x(n) defined previously, we observe that it 
satisfies the relation 

(6) p(E)x(n) = ha(E)x(n) + T(n) = ho(E)Ax(n) + T(n), 

while the sequence y(n) satisfies 

(7) p(E)y(n) = ha(E)y(n) - r(n) = ha(E)Ay(n) - r(n) . 

The terms r(n) and T(n) are called the round-off and truncation errors at the nth 
step respectively. Subtracting (7) from (6), and making the substitution e(n) = 

x(n) - y(n), we see that the error e(n) at the nth step satisfies 

(8) p (E)E (n) = ha (E)AE (n) + T (n) + r (n). 

Let us now assume that r(n) = r and T(n) = T are constant, and set A = P-1BP, 
where P is a constant nonsingular matrix and B will be explained later. 

If we multiply Eq. (8) by P, and set Pc(n) = 7(n) wherever it appears, we have 

(9) p(E)rq(n) - ha(E)Bq(n) = & 

where 8 = P(r + T) and we need henceforth discuss only the normalized error 
r,(n), from which e(n) may be computed. In particular, if P may be chosen so that B 
is diagonal, the vector Eq. (9) yields the following N scalar equations for the com- 
ponents of 77(n): 

(10) (p(E) - hXi(E))rqi(n) = 8i i = 1, * N. 

It is well known that if the zeros of the polynomials (5) are distinct, and if none of 
the eigenvalues Xi is equal to zero, the solutions of (10) are 

(1 1 ) X i(n) = A iin, + * + A ikk - & i/hX iv (1) 

vilj * *. , ikbeing the zeros of the ith polynomial (5). If the zeros are not distinct, 
or if some Xi should vanish, the right side of the Eq. (11) must be replaced by an 
alternate expression, which, however retains the property that its nonconstant 
terms all approach zero as n grows large, provided only that the zeros are of less than 
unit modulus. In view of this uniformity of behaviour, we shall not pause to discuss 
the various forms which Eq. (11) may take, but will proceed directly to the study 
of the behaviour of the zeros of the polynomials (5). 

III. The Proof of the Theorem. To begin with, let us observe that if t I < Q 
Rouche's theorem guarantees that the polynomial p(z) - to(z) has just one zero 
outside the contour C. We shall denote it by p1(t) and call it the principal zero of 
p - to. The other zeros shall be called extraneous. If t 5 0, then p1(t) is not a zero 
of either p or a. We choose a point to of the disc ItI < Q, and set zo = P1(to). Then 
the representation 

k 

(12) p (z) - too (z) = E a;(z -z) 
j=1 
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together with the fact that zo is a simple zero of p - too, yield the fact that a1 = 

p'(zo) - to o'(zo) F 0. But since to = p(zo)/a(zo), we have o(zo) p'(zo) - p(zo) o'(zo) # 

0, which implies that the function t = p(z)/1o(z) has a nonvanishing derivative at 
z = zo, and possess a unique analytic inverse z = f(t) in some neighborhood of to. 
Moreover, since p(f(t)) - ta(f(t)) = 0, f(t) can only be p1(t), which is therefore 
analytic and univalent near to, and hence throughout the disc Itl < Q. 

A function which is analytic and univalent on a disc, however, is subject to 
strict regularity conditions. In particular, (see Hayman [4, p. 4 and p. 139]) if f(z) is 
analytic and univalent in IzI < 1, f(O) = 0, f'(O) = 1, (that is, if f is a schlicht 
mapping) we have the inequalities 

(13) Jf(z)l ? r/(1 - r)2 and larg (f(z)/z)l < log ((1 + r)/(1 - r)) 

for all lzI < r < 1. So now let us set r = t/Q and define an auxiliary function 0( r) 
on 1 r1 < 1 by the relation s(r) = (p1(t)- 1)/Q. Then s(r) is analytic and univalent 
on the unit disc, and sp(O) = 0. Moreover, the Maclaurin expansion p1(t) = 1 + 
t + (see Henrici [5, p. 237]) shows that sp'(O) = 1. Thus we have the inequalities 

,1'I l, (t) - 1| = I4(,r)I < r/(1 - r)2 
(14) 

|arg (p1 (t) - 1) - argtl = arg (sp (T)/r) ? _ log ((1 + r)/ (1 - r)) 

whenever ItI < rQ < Q. 
Now let us suppose that r is constrained to lie in the sector I rj < r, 1 - arg rI 

< 0 < 7r/2. By the inequalities (14), the image of this sector under the schlicht map 
w = Qsc'(r) is contained in the domain bounded by the circular arc Iw = Qr/(1 + r)2 
and the two curves r - arg wl = 0 + log ((1 + r)/(l - r)). But if 

(15) ( +g-2 cos )+ + log 

or equivalently if r < re, w = Qsp(r) will surely lie in the circle Iw + 11 < 1 whose 
equation is IwI < - 2 cos (arg w), ir/2 < arg w < 3ir/2. A similar argument shows 
that if -r/2 < arg w < ir/2, p( r) must lie in the right-half plane, for small 1rl, 
and hence cannot lie in Iw + 11 < 1. Finally, if r is pure imaginary, we need only 
observe that the curvature of the graph of log ((1 + r)/(l - r)) is zero when r = 0 
to conclude that Qsp(r) must lie outside Iw + 11 < 1 for small I rI in this case too. 
Thus, since I,1(t)I < 1 if and only if w = Qsp(r) lies in the circle Iw + 11 < 1, and 
since the extraneous zeros are all of less than unit modulus so long as It < Q, we 
have shown that all of the zeros of p - ta must lie in the unit circle if ir/2 < 
arg t = 0 < 37r/2, and ItI < reQ, and further, that if - r/2 ? arg t = 0 < ir/2, at 
least one of the zeros must lie outside Iz < 1 for small values of t 1. The theorem 
follows by allowing t to take on the N values hXi, and recalling the fact that (1) is 
asymptotically stable if and only if Re Xi < 0 for i = 1, 2, *-* *, N. 

IV. Remarks. In the next section, we will consider some possible applications of 
the theorem and give the results of a few experiments designed to establish its 
importance. Before we pass on to such a discussion, however, we should observe 
that, in part II, we assumed the matrix A to be diagonalizable, and so arrived at 
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the Eq. (10) for the components vqi(n) of the normalized error v(n). If such is not the 
case, however, we may assume B to be in Jordan canonical form, so that (10) is 
replaced by 

(10') p(E) - hXiv(E)ni(n) = ho(E)?i+1(n) + 8i 

where n i+i(n) may be regarded as known. The general solution of (10') is the sum 
of a particular solution plus the general solution of the related homogeneous 
equation, which is already known. Now if 7qi+1(n) = Biin1 + * + Bikvk + K 
where K is a constant, then the right side Ri(n) of (10') is 

(16) Ri?(n) = &i + ho(E)rh +1 (n) = ho(E) (B i1lX+ ?+ B ikik+ K) 

= Cilrl + ? * * + Cikrk + &ij 

where Cij = hBjjo(oj) and &i' = 8i + hKo(1). But a particular solution of (10') 
is given by the expression 

n 

(17) zi(n) = ERi(m)ym(n) 
m=k 

where the sequence { ym(n) } are certain particular solutions of the related ho- 
mogeneous equation. Hence each yrn(n) has the form 

(18) ymf(n) = A1m ii + * * * + Aktmrk. 

It may now be shown by a rather lengthy but obvious calculation, that zi(n), and 
hence every solution of (10'), is the sum of a sequence which is bounded and one 
which tends to zero with the nth powers of the zeros of the polynomials (5), so long 
as these are of less than unit modulus. That is to say, the behaviour of the sequence 
-q(n), and hence E(n), is essentially the same whether or not A is diagonalizable, and 
is at least qualitatively the same as the behaviour of the error which arises in case 
N = 1. This we offer by way of justification of our definition of B-stability. If 
further justification is still in order, we suggest that it should come from empirical 
evidence that the distinction it makes is indeed a useful one. 

V. Numerical Results and Applications. In order to demonstrate the importance 
of B-stability to the numerical solution of systems (1), we wrote a program to solve 
the system 

(19) (x ) = (-ab a+ b)( y )+(f (t)) 

the initial conditions being chosen so that the transient terms in the solution would 
vanish. The eigenvalues of this system are a and b. The program used single pre- 
cision arithmetic, was supplied with exact starting values, and made use of only a 
single prediction and a single correction at each step. It was hoped that although so 
rudimentary a program would be totally unsatisfactory in the general case, it 
would still be possible to obtain good answers for the stable problems. In general 
this hope was realized. The characteristic polynomial for such an algorithm may be 
shown to be (see Chase [1]) 

(20) p(z) - h2Xi2bku(z) - hXiv(z) - hov*(z) 
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where (p, a) is the correction method, (v, ,u) is the prediction method, and v* is the 
polynomial obtained by subtracting bkzk from v(z). If the eigenvalues are constrained 
to be real, it is possible to test (20) numerically to find the interval Q, < hXj < 0 for 
which all of the zeros remain inside of the unit circle. In this way it was possible to 
determine exactly for which stepsizes the methods were B-stable, and for which 
one or more of the characteristic zeros lay outside of the unit circle. 

The predictor used was an eight point Newton-Cotes formula, and the correctors 
were respectively, the Adams 7-point formula, and the formulae W7(.4), and 
R7(.4), of Hull and Newbery [7]. f(t) was set equal to t2 sin t + t3, the eigenvalues 
(a, b) were chosen successively to be (1, 2), (-1, 2), (-1, -2), (3, 4), (-3, 4), and 
(-3, -4), and the stepsizes of 2-1, 22, ** , 2-9 were tried. As might be expected, 
the answers were largely meaningless. In fact it was only for the pairs (-1, -2) 
and (-3, -4) that the analytic solutions ever exceeded the errors, but for these 
two problems, the answers were quite good. To be more precise, we plotted the 
maximum error over the interval 0 ? t ? 10 against bh, where h is the stepsize and 
b is the larger eigenvalue, the result always being a curve of the form: 

lerrorlmax 

jhbl -Q1 

Here Qi is the value of hb for which one of the zeros of (20) first escapes from the 
unit circle. To the left of Q1, the errors were of the order 10-s to 10-s, while those to 
the right varied between 103 and 1020. In other words, since the correct answers 
were of the order 102, the answers gave from five to seven significant digits for stable 
values of hb, and none at all for unstable ones. In the case of the unstable systems, 
the pictures had the same general shape, but the answers were never good enough 
to yield even one significant digit. Tables 2, 3 and 4 list the quantitative results of 
applying the Adarrs method, W7(.4) and R7(.4) respectively to the six problems 
mentioned, and constitute, we believe, rather striking evidence of the effect of 
B-stability on the results of numerical integration. 

Finally, let us note that our results bear on a wider range of problems than they 
have been stated for. If we wish to integrate 

(1') xt = f (x, t); X (to) = Xo 

where f C C' for t > to, we may still write Eqs. (6) and (7) in the form 

(6') p(E)x(n) = ha(E)?(n) + T(n) 

(7') p(E)y(n) = ha(E) y(n) -r(n) 

and observe that Es(n) = xr(n) - yi(ln) = f (x(n), t) - f (y(n), tn) = Vf (zi) * E(f) 
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so that ef(n) = AsE(n), where zi is some point on the line segment joining x(n) and 
y(n), and A is the matrix whose rows are the vectors Vfi(zi). Hence Eq. (8) may be 
written just as before, and making the assumptions that A, r(n) and T(n) are con- 
stant, we can proceed again as in Section II. Thus we may extend our analysis to 
nonlinear problems for which the eigenvalues of the variational matrix A are 
sufficiently well known, and we may construct programs which monitor the stepsize 
h in order to keep the zeros of the characteristic polynomials always within the 
unit circle. When such an approach -is feasible, it will often result in considerably 
reduced computing times, due to the larger values of h which it permits. 

TABLE 1 

Q = .1 

1800/7r re 1800/r re 

150 .5708 700 .1697 
300 .4762 750 .1277 
400 .4063 850 .0426 
500 .3313 870 .0255 
600 .2522 890 .0085 

Q = .2 
1800/7r re 1800/7r re 

15? .5669 700 .1668 
300 .4720 750 .1252 
400 .4020 850 .0416 
500 .3272 870 .0250 
600 .2485 890 .0083 

Q = .3 
1800/7r re 1800/7r re 

15? .5630 700 .1639 
300 .4678 750 .1229 
400 .3978 850 .0407 
500 .3232 870 .0244 
600 .2448 890 .0812 

Q = .5 
1800/7r re 1800/7r re 

150 .5551 700 .1584 
300 .4594 750 .1185 
400 .3894 850 .0390 
500 .3151 870 .0233 
600 .2377 890 .0077 

Q = .7 
1800/7r re 1800/7r re 

150 .5472 700 .1531 
300 .4510 750 .1143 
400 .3811 850 .0375 
500 .3073 870 .0224 
600 .2308 890 .0074 



748 JAMES CASE 

| | t 7 ~~ t 7 t X | t o t 

t cq - C M t- c C: m C t on< 

= UC: Ct mo 0 q o m C: n C: Cc o U- 00 Cq 00 UD oC Cq . . . .: .o . . . . . o . . cq .S . .o . .o . 

l~~~~~- r-o U- cq 0 Cc C t- m I tn 
tCS t- o- c 

I VD 0 C: o Cc C Cq cq m Cc IC v q 

CS~ C:I to cq" qc cI 
q 

t 

Cm 
o 

t- Co C~ 
o 

C 
s :C: oI 

Cq . .S . . . cq cq C M z .Cq 

~~~~~~~~~~ cI c I I Ic> 

Cq t- C:C<<vs :s o cq C 
oo , q C c m r-- Cm c: I :C s :I >C <C: 

> > s b z k > b n < z O k > s n < O < Oq cq 

U-? It CS O C C : C r-- "' m r-- 0 0 C: 

m C C m qcI cI O- -~c 

t_ (< C ) Xt 0 00 C: U_ C cq) C>J Cm t- m 

7 ~~~~~~~~~~~cq ( vo ot 7- Co r-- so r-- 7- c o I 

t- cq o0 Co c: o c 

cI c e eq cq cc. c"I mO c" O ~ I~ C t-h e 

q t- C o o Io (o cq ebc c:~~~~~~~~~~" o t- t- c:cev o cq oc < O0 C Cs ( eq 
. 

. : . . 0 . :C 

42 cq cq q It It rq cq cqx 't Tt -t c"I C > 
I 

Itt 

P- r-- 0 > cm cle) O'I -4 -- tn e0 Os e c( n 



STABILITY OF PREDICTOR-CORRECTOR TECHNIQUES 749 

University of Wisconsin 
Mathematics Research Center 
Madison, Wisconsin 53706 

1. P. E. CHASE, "Stability properties of predictor-corrector methods for ordinary differential 
equations," J. Assoc. Comput. Mach., v. 9, 1962, pp. 457-468. MR 29 #738. 

2. G. G. DAHLQUIST, "Stability and error bounds in numerical integration of ordinary differen- 
tial equations," Kungl. Tekn. Hogsk. Handle. Stockholm., v. 130, 1959, 87 pp. MR 21 #1706. 

3. G. G. DAHLQUIST, "A special stability problem for linear multistep methods," Nordisk 
Tidskr. Informations-Behandling, v. 3, 1963, pp. 27-43. MR 30 ff715. 

4. W. K. HAYMAN, Multivalent Functions, Cambridge Tracts in Math. and Math. Phys., no. 
48, Cambridge Univ. Press, New York, 1958. MR 21 #7302. 

5. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 
1962. MR 24 #B1772. 

6. P. HENRICI, Error Propagation for Difference Methods, Wiley, New York, 1963. MR 27 
#4365. 

7. T. E. HULL & A. C. R. NEWBERY, "Integration procedures which minimize propagated 
errors," J. Soc. Indust. Appl. Math., v. 9, 1961, pp. 31-47. MR 22 #11519. 

8. T. E. HULL & A. C. R. NEWBERY, "Corrector formulas for multi-step integration methods," 
J. Soc. Indust. Appl. Math., v. 10, 1962, pp. 351-369. MR 27 #2130. 


	Cit r56_c59: 
	Cit r57_c60: 


